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ABSTRACT 

In recent years, an increasing number of knowledge bases have been built using linked data, thus 

datasets have grown substantially. It is neither reasonable to store a large amount of triple data in 

a single graph, nor appropriate to store RDF in named graphs by class URIs, because many joins 

can cause performance problems between graphs. This paper presents an agglomerative-adapted 

approach for large-scale graphs, which is also a bottom-up merging process. The proposed 

algorithm can partition triples data in three levels: blank nodes, associated nodes, and inference 

nodes. Regarding blank nodes and classes/nodes involved in reasoning rules, it is better to store 

with an optimal neighbor node in the same partition instead of splitting into separate partitions. 

The process of merging associated nodes, needs to start with the node in the smallest cost and 

then repeat it until the final number of partitions is met. Finally, the feasibility and rationality of 

the merging algorithm are analyzed in detail through bibliographic cases. In summary, the 

partitioning methods proposed in this paper can be applied in distributed storage, data retrieval, 

data export, and semantic reasoning of large-scale triples graphs. In the future, we will research 

the automation setting of the number of partitions with machine learning algorithms. 

Keywords: linked data, agglomerative-adapted partition, merging algorithm, large-scale graph, 

k-graph 

INTRODUCTION 

With the rapid development of linked data, more and more organizations are using this mature 

technology to build and publish their knowledge bases or datasets (Erkimbaev, Zitserman, 

Kobzev, Serebrjakov and Teymurazov, 2013; Knoblock et al, 2017; Chen Tao, Zhang Yongjuan, 
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Liu Wei and Zhu Qinghua, 2019). As can be seen from the latest linked open data (LOD) cloud1, 

there is a growing number of big datasets, such as DBpedia2, SciGraph3, VIAF4, UniProt5, and so 

on. All of these large datasets have become the infrastructure and core components of their fields. 

For example, the 2016-04 release of the DBpedia dataset describes 6.0 million entities, 

consisting of 9.5 billion RDF triples. DBpedia data is categorized into hundreds of entity classes, 

and has been linked by a number of applications and datasets. These large datasets often provide 

segmented downloads for different classes in official publishing sites. When these databases can 

be applied, we need to dump and restore them in a local repository which also introduces a 

number of challenges. 

The Resource Description Framework 6  (RDF) is a family of World Wide Web 

Consortium (W3C) specifications originally designed as a metadata data model. It has come to 

be used as a general method for conceptual description or modeling of information that is 

implemented in web resources. Considering the large amount of data, it can lead to performance 

problems, especially restoring these data in a graph. In fact, normally we only need to operate 

data on its sub-graph, such as retrieval, export, reasoning in some classes. Some researchers 

might think of splitting the graph into several named graphs, which is having multiple RDF 

graphs in a single document/repository and naming them with URIs. If we divide them on 

average, the data for the one class can be divided into multiple graphs at random. If we create 

named graphs by class URIs, a larger number of graphs are generated. Excessive joins in 

federated queries can also cause performance degradation. Therefore, this is not the better 

solution, especially when the data size between classes is unbalanced. For example, some named 

graphs only have hundreds of triples, while some others have millions of triples. In view of this 

background, we propose a simple agglomerative-adapted partition approach that can be used to 

split triples in large-scale graphs. 

LITERATURE REVIEW 

A great deal of research articles and presentations have addressed the topic of triples partitions 

and RDF performance in application. These studies mainly focus on the use of distributed 

framework, efficient storage and indexing, and dynamic partitioning algorithms. 

 Many research efforts have been devoted to develop distributed RDF data management 

systems implemented on the Hadoop computing framework and MapReduce algorithm. For 

example, Apache Jena Elephas7 is a set of libraries which provide various basic building blocks 

for writing Apache Hadoop based applications which work with RDF data. Some researchers use 

Hadoop to store and retrieve large numbers of RDF triples stored in flat text files in Hadoop 

Distribute File System (HDFS) (Mohammad, Pankil, Latifur and Bhavani, 2009; Kurt and 

Richard, 2010; Khushboo and Abhishek, 2017). Vaibhav, Murat, Bhavani and Paolo (2012) 

proposed Jena-HBase, which stored RDF indices in HBase and directly carried out queries 

                                                           
1https://lod-cloud.net/ 
2https://wiki.dbpedia.org/ 
3https://scigraph.springernature.com/ 
4https://viaf.org/ 
5https://www.uniprot.org/ 
6https://www.w3.org/RDF/ 
7https://jena.apache.org/documentation/hadoop/ 
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through HBase APIs. Nikolaos, Ioannis, Dimitrios and Nectarios (2012) demonstrated the 

H2RDF system, a distributed RDF store that combines a multiple-indexing scheme with 

BigTable and MapReduce. Alfredo, Rajkumar, Vincenzo and Giovanni (2017) provided a 

MapReduce-model-based algorithm for managing big RDF graphs, which tried to exploit the 

computational power offered by the MapReduce processing model. 

 There are also a number of researchers who have made breakthroughs in data storage and 

indexing. Zeng, Yang, Wang, Shao and Wang (2013) introduced Trinity.RDF, a distributed, 

memory-based graph engine for web scale RDF data stored in its native graph form. It achieved 

much better performance for SPARQL queries than the state-of-the-art approaches. Gu, Hu and  

Huang (2014) proposed Rainbow, a scalable and efficient RDF triple store. The RDF data 

indexing scheme in Rainbow is a hybrid one which was designed based on the statistical analysis 

of user query space. Li and Heflin (2010) presented a query optimization algorithm to identify 

the potentially relevant Semantic Web data sources using structural query features and a term 

index. Razen, Yasser and Panos (2014) presented PHD-Store, a SPARQL engine for federations 

of many independent RDF repositories. PHD-Store followed an adaptive approach that allowed 

it to start processing queries immediately, thus minimizing the data-to-query time, while 

distributed and indexed only those parts of the graph that benefit the most frequent query 

patterns. 

 Some other researchers use graph partitioning optimization techniques about RDF graph 

patter matching. For instance, Ruben, Miel and Pieter (2014) introduced Linked Data Fragments 

(LDF), a publishing method that allowed efficient offloading of query execution from servers to 

clients through a lightweight partitioning strategy. Huang and Daniel (2016) introduced a 

dynamic graph partitioning algorithm, designed for large, constantly changing graphs, and he 

also proposed a partitioning framework that adjusted on the fly as the graph structure changed. 

Wang and Kenneth (2012) proposed a promising approach that utilized the graph nature of RDF 

datasets to minimize relations among partitions after dataset partitioning, and optimized system 

design based on it. Hao, Li, Yuan and Jin (2017) described an association-oriented streaming 

graph partitioning method named Assc. This approach first computed the rank values of vertices 

with a hybrid approximate PageRank algorithm, and then split these vertices with an adapted 

variant affinity propagation algorithm. 

 The agglomerative-adapted approach proposed in this paper belongs to the third category 

mentioned above. This approach is mainly based on the ontology structure and RDF data, and 

merges the different nodes from the aspect of measurement. 

METHODS 

Building the reformation graph 

Several key concepts need to be pointed out before the key approaches and methods are 

introduced. An ontology is an explicit specification of a conceptualization which describes 

individuals (instances), classes (concepts), attributes/properties, and relations. In knowledge 

graphs, it describes classes with nodes and uses directional edges to represent attributes. As 

shown in Figure 1, nodes c1, c2, c3, ... are Classes, and p1, p2, p3, ... represent properties. There 

are two type of properties, DatatypeProperty and ObjectProperty that describe what kind of 

values a triple with the property should have. Datatype properties relate individuals to literal data 
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(e.g. strings, numbers, datetypes, etc.) like p1, p2, p3 in Figure 1, whereas object properties relate 

individuals to other individuals like properties p5, p6, p7, etc. 

 In Figure 1, there are also some different types of nodes/classes: standalone node, 

association node, blank node, and inference node. 

 A standalone node is a node without relationships with other nodes. This type of nodes 

only has datatype properties, such as node c1 in Figure 1 has p1, p2 and p3 properties. 

 An associated node, most commonly used in knowledge graphs, has an association with 

another node through object property. For instance, node c2 and node c5 are associated with 

property p5; node c6 and node c9 are linked with property p10. 

 A blank node is a node in an RDF graph that represents a resource (anonymous resource) 

for which a URI or literal is not given. Blank nodes are recommended to be used with related 

entity resources as there are different node IDs for the same triples of blank node in two graphs. 

The node connected to p23 belongs to this node type. 

 An inference node is a node reasoned by other classes and properties based on inference 

rules. For example, the node r12 is inferred from p16 and p17 properties which belong to node 

c9 and node c10 respectively. 

 In splitting the reorganization diagram, we can try to get the largest possible trees. As 

demonstrated in Figure 1, there are four top nodes c1, c2, c3 and c4, thus the easiest way to do 

this is to split this graph into four trees which is shown in Figure 2. However, if you want to split 

this graph into more or fewer trees, you can use the method we proposed later. 

 
Figure1. A pseudo-reformation path-goal graph constructed 

 
Figure 2. The split trees and the duplicate areas 
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 The significant features of the graph might be the shared nodes such as c5 belongs to c2 

and c3 connects with p5 and p6. There are two methods for how these common nodes are 

partitioned. As many partitions will bring more joins between different partitions, splitting these 

nodes into partitions separately will cause efficiency problems while making a SPARQL query. 

However, storing them in multiple partitions can result in duplication of triples. Therefore, we 

need to make a balance between these two methods, since our original intent is to minimize 

duplication of data and minimize the number of joins with each other. 

Partition process for trees 

 Given a tree as shown on the right part of Figure 3, we need to extract “partition 

templates” from the tree. We propose to partition it with an agglomerative-adapted merging 

process to obtain reasonable sized partitions. Firstly, we define the cost of a partition template as 

the total number of no-duplicate triples that are mapped to their predicates, and define the 

neighbors of a certain partition as the partitions that share the same nodes/predicates and are next 

to each other. The basic approach is to start with as many small partitions as possible and always 

merge the lowest cost partition with its smallest neighbor partition into a new partition. The new 

partition size and sequential partition list are then updated and continuously moved to the next 

smallest partition to iteratively partition. 

 As illustrated in step 0) in Figure 4, we initialize the cost of each predicate by loading the 

triples and mapping their predicates, and the cost of each minimum partition is simply the sum of 

the cost of all its predicates. Then we can divide all the nodes into separate partitions, except for 

blank nodes, which must be put together with their corresponding resources. There are eight 

initial partitions in this step, and the cost in node c10 and its blank node is 50+115+20=185, of 

which 50 and 115 are the triple number of p17 and p18 in node c10, and 20 is the triple number 

of p23 in blank node. Next we have to do four merging steps.Of course, the number of merging 

times is not fixed.  That needs to be based on the final number of partitions to determine. 

 In step 1), we determine the least partition cost is 35 which is the sum of the quantities of 

property p13 and p14 of node c8, and we merge it with its neighbor node c5. For node c8, it has 

two neighbor partitions, c5- and c11- oriented partitions; however, the cost of c5 is 60 fewer than 

80 of c11. So we chose the least one, c5, as the best adjacent merge node and the cost of new 

 
Figure 3. Take the c3-oriented tree from last graph as an example 
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partition merged with c5 and c8 is 60+20+15=95. It is important to note that the inference node 

r12 is not processed at this step.  It will be merged in the last step. 

 Subsequently, in step 2), we continue to search and get the next least partition, which is 

c6-oriented partition, with cost of 75, and we merge it with its best neighbor partition with least 

cost. After merging, the new partition includes c3 and c6 nodes, and the cost is 70+20+75=165. 

Similarly, we repeat this process in step 3) to merge nodes c5, c8, and c11. 

 The last step is how to merge the inference node, which is most important step in the 

entire process. The nodes corresponding to the properties used in the inference rules need to be 

stored in the same partition as the inference node. In step 4), for instance, we should put nodes c9, 

c10, and r12 in one partition, and the total cost in this partition is 230+185+50=465. 

 

 
Figure 4. An example of agglomerative-inspired merging process 
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 If we want to split the graph into three partitions, when we merge four times, it has 

already produced relatively balanced partition sizes, as shown in Figure 5, with costs of 165, 175 

and 465. We can further merge partition one (with nodes c3 and c6) and two (with nodes c5, c8 

and c11) if we want to split the graph into two partitions. Eventually we can get two partitions 

with costs of 340 and 465. 

 The proposed agglomerative-adapted approach is a bottom-up consolidation process. 

Note that “bottom” here means the node with the lowest cost and not the leaf of the trees. There 

are some details and observations about partition principles or rules: 

1) Do not split triples belonging to the same resource, but you can split sub-triples that exist 

in the object resource to another partition.  

2) If triples t and t’ combined with some axioms (strong relationships) will infer some new 

triples, they must appear in the same partition. 

3) Try to reduce duplicate nodes in partition templates as much as possible. 

4) Try to balance the overall sizes of partition templates, avoiding some template sizes 

getting too large while others too small. 

5) A blank node is a resource without global identity, and it must appear in the same 

partition with its related subject resource. 

6) Only split triples corresponding to the object properties, do not split triples of datatype 

properties. 

 Traditionally, agglomeration is a hierarchical clustering method that starts to treat each 

object as singleton clusters and then successively merge pairs of clusters until there is one single 

cluster that contains all objects. The significant features that could be referred to are 1) the 

cluster number is flexible and could be obtained by cutting an endrogram and 2) the merging 

process is to always merge the closest or most similar two clusters.  

 

Figure 5. Rule merging process for last example in figure 6 
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 Note that the situation and application methods are of great difference in our case, but we 

adapt the ideas of agglomeration to our own partition approach. In this example, we assign very 

small cost values to simplify the description of the idea. However, the actual costs should be 

larger, which can produce a Cartesian product. 

ALGORITHM AND IMPLEMENTATION 

The main flow of the algorithm is shown in Figure 6, where we take four merging steps, of 

which steps 2 to 4 require iteration to achieve the final desired result. The algorithm should 

operate the ontology and RDF data, and we give the core SPARQL statements and algorithm 

with pseudocode of the merging approach in the following. 

Step1: Statistic Cost of Associated Nodes 

1: q ← SELECT ?node (COUNT(DISTINCT *) AS ?cost)  

        WHERE { 

            ?uri ?p ?o . 

            {SELECT DISTINCT ?node ?uri  

              WHERE { 

                 ?uri a ?node .  

                 FILTER (isIRI(?uri)) 

             }} 

        } GROUP BY ?node 

2: entityMaps<node, cost> <-perform this SPARQL query and save the output in entityMap variable. 

 First, we perform the statistics algorithm of associated nodes in Step 1 in the whole raw 

graph or model (raw_model). It is important to note that blank nodes are not counted here, 

because these nodes will be merged into the corresponding nodes later. After execution, this 

 

Figure 6. Algorithm flowchart 
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algorithm will output all the associated nodes and their cost value, which can be recorded in 

variable entityMaps<node, cost>. 

Step2: Merge Costs of Blank Nodes to Associated Node 

1: void mergeBlankNodes(entityMaps<node, cost>, raw_model) { 

2:     while time < entityMaps.size 

3:         q ← SELECT DISTINCT ?p  

4:               WHERE { 

5:                  ?uri a <node> ; ?p ?s . 

6:                  FILTER (isBlank(?s)) 

7:              } 

8:         bp_list<property> <-launch this SPARQL to query all properties which have blank nodes as 

object value. 

9:         IF bp_list.size > 0 THEN 

10:             while time < bp_list.size 

11:                 mergeBlankNode(cost, raw_model, node, "<" + property + ">"); 

12:             end 

13:     end 

14: } 

 

15: void mergeBlankNode(cost, raw_model, node, path) { 

16:     q ← SELECT (COUNT(DISTINCT *) AS ?count)  

17:         WHERE { 

18:            ?s ?p ?o .  

19:            {SELECT ?s WHERE { 

20:                ?uri a <node> ; path ?s . 

21:                ?s ?p ?o . 

22:            }} 

23:         } 

24:     cost ← cost + count <-run SPARQL query to count cost of blank node (?s) in property path of 

associated node. 

 

25:     q ← SELECT DISTINCT ?p  

26:         WHERE { 

27:            ?uri a <node> ; path ?s . 

28:            ?s ?p ?o . 

29:            FILTER (isBlank(?o)) 

30:         } 

31:     bp_list<property> <-launch this SPARQL to get all properties which have blank nodes of path 

resource (?s). 

32:     IF bp_list.size > 0 THEN 

33:         while time < bp_list.size 

34:             path = path + "/<" + property + ">"; 

35:             mergeBlankNode(cost, raw_model, node, path); 

36:         end 

37: } 

 Subsequently, with the output of the last step, entityMaps<node, cost>, we can use 

algorithm 2 to merge blank nodes to each associated node. Blank nodes can have multiple layers 

when used; therefore, this step can be looped and recursively executed, which is shown in 

function mergeBlankNode(cost, raw_model, node, path). This algorithm will count the cost of 
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all blank nodes of each associated node, and the cost will be summarized with the value of the 

associated node counted from algorithm 1 in line 24. Until now, we have merged blank nodes, 

and the output can be put into the entityMaps<node, cost> variable for subsequent operation. At 

this point, the nodes in entityMaps have not changed, but the costs of blank nodes are 

summarized. 

Step3: Merge Inference Nodes 

 In a semantic web application, an inference engine or reasoner is used to derive 

additional RDF assertions, which are entailed from some base RDF together with any optional 

ontology information, and the axioms and rules associated with the reasoner. All classes 

involved in inference rules are divided the same partition, which can guarantee the efficiency of 

reasoning. When merging, the node with less cost will be merged into a large one, and then 

update entityMaps value. The operation of this step is relatively simple and can be only 

performed in the entityMaps variable. After this merging step, the size of entityMaps will be 

changed. The inference nodes will less cost value will be merged into the nodes with more cost. 

Step4: Merge Associated Nodes 

 In this step, we will extract the node with the smallest cost and use the ontology structure 

to calculate the optimal adjacent node. This is not a simple use of SPARQL to directly query the 

neighbor nodes, so we can use the following flowchart in Figure 7 to illustrate the algorithm. 

 As shown in the Figure 7, the input of the algorithm is class or node URI which has the 

smallest cost value in entityMaps, and the output result is the optimal neighbor node, the class of 

the upper subject or lower object resource of this node. For a node URI, it may be a subject to 

connect other resources, or it may act as object of other resources. Therefore, it is necessary to 

find the subject and object classes for this node URI. Because process 1 and 2 are similar, we 

 

Figure 7. Flowchart for getting neighbor node 
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will only explain process 1 for looking for an adjacent subject class. First, we need to determine 

whether the node URI is an object of another resource, that is, to identify a possible subject 

resource. If such a subject resource does not exist,  this indicates that the input node is not 

connected to another subject resource. Conversely, when such a subject resource exists, the next 

step is to determine the resource type of this subject, IRI or a blank node. If the subject type is a 

blank node, it means that this blank node must exist as an object for another resource. We should 

repeat this step until the end subject of the IRI type is found. Once found, it is convenient to find 

out the class type with property rdf:type of this resource which is marked subject_class. Based on 

the same principle, we can find the class of the adjacent object resource marked object_class here. 

After getting the output result, we select the class with minimum cost in subject_class and 

object_class as the output value. Of course, if one of subject_class or object_class does not exist, 

you can use the other class as output value. Finally, the cost of the input class can be merged into 

the output class, which will update the value of the output class in entityMaps, while removing 

the input class too.  

 The following pseudocode shows the algorithm implementation of this step in Apache 

Jena framework. The final result of the merging step recursion is that the size of entityMaps is k. 
1: void mergeAssociatedNodes(entityMaps<node, cost>, raw_model) { 

2:     entityMap<minClass, min> <-get the node with smallest cost in entityMaps. 

3:     relClasses <-define the list of relation classes of node with smallest cost in entityMaps. 

4:     mergeUps(relClasses, raw_model, minClass, ""); <-get the subject's class with function mergeUps. 

5:     mergeSubs(relClasses, raw_model, minClass, ""); <-get the object's class with function mergeSubs. 

6:   mergeNode2RelClass(entityMaps<node, cost>, minClass, relClasses); <-merge minClass node to 

the optimal neighbor node. 

7:     IF entityMaps.size > k THEN 

8:         mergeAssociatedNodes(entityMaps<node, cost>, raw_model); <-after each recursion, the size of 

entityMaps will gradually tend to the set value of k. 

9: } 

10: void mergeUps(relClasses, raw_model, node, property) {<-only offers the program logic of 

mergeUps function in paper. 

11:     IF property is blank THEN 

12:         property ← a 

13:     ELSE 

14:         property ← property + "/a" 

 

15:     q ← SELECT DISTINCT ?class ?p  

16:         WHERE { 

17:            ?s a ?class ; ?p ?o .  

18:            ?o property <node> .  

19:            FILTER (isIRI(?s)) 

20:         } 

21:     IF results.size > 0 THEN <-results are the outputs in SPARQL query. 

22:         relClasses.add(class); <-add the class queried in SPARQL to relClasses list. 

23:     ELSE 

24:         q ← SELECT DISTINCT ?class ?p  

25:             WHERE { 

26:                ?s a ?class ; ?p ?o .  

27:                ?o property <node> .  

28:                FILTER (isBlank(?s)) 

29:             } 
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30:         property ← "<" + p + ">/" + property; 

31:         mergeUps(relClasses, raw_model, node, property); <-recursive queries until the IRI entity node. 

32: } 

EXPERIMENTS AND ANALYSIS 

Figure 8 is a practical case of the bibliographic platform in our actual project. We use the ideas 

and algorithms we proposed to split the whole graph to partitions with different degrees. The 

bibliographic platform is developed based on BIBFRAME (Bibliographic Framework), which is 

a data model for bibliographic description. BIBFRAME was designed to replace the MARC 

standards and to use linked data principles to make bibliographic data more useful both within 

and outside the library community. 

 The BIBFRAME vocabulary consists of RDF classes and properties. Classes include the 

three core classes, Work, Instance, and Item. Properties describe characteristics of the resource 

and relationships among resources. The highest level of abstraction, a Work, reflects the 

conceptual essence of the cataloged resource. A work may have one or more individual which 

reflects information such as publisher, place, and date of publication. An item is an actual copy 

(physical or electronic) of an instance. It reflects information such as its location (physical or 

virtual), shelf mark, and barcode. The three core classes are connected by properties. For 

example, an Instance may be an "instance of" a particular BIBFRAME Work, and an Item is 

connected to an Instance via bf:itemOf property. 
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 In this figure, we mark the cost of classes that need to be summarized by several 

properties. However, there are some classes without a mark that only have one property, and in 

this case, the cost of class is the same as its property cost. When actually in use, we use a large 

number of blank nodes without the background color in Figure 8, such as GeographicCoverage, 

Title, Temporal nodes. The associated nodes, e.g. Work, Instance, Item, Place and Person nodes, 

are drawn with background color. 

 In order to verify the feasibility of the proposed algorithm, we consider dividing the 

entire graph into 5, 4, and 3 partitions, respectively. As seen in Figure 9, the bibliographic 

platform contains five associated nodes, so we only need to merge blank nodes if we want to 

split the graph to 5 partitions. When you need to split them into 4 partitions, you must merge the 

triples data from the Place class into the Work class. Similarly, for 3-graph, the Person class 

should be merged into the upper classes, Work and Instance. You will find that Person class has 

been stored in two copies. The advantage of two copies is that the relative independence and 

integrity of the data can be guaranteed when using partitioned data, which is conducive to the 

improvement of the efficiency of use. In this project, we didn't use reasoning, so we did not 

provide the result of inference nodes merging. 

 

Figure 8. The reformation tree for Bibliographic platform 
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 In statistics, standard deviation (SD) is a measure that is used to quantify the amount of 

variation or dispersion of a set of data values. A low SD indicates that the data points tend to be 

close to the mean of the set, while a high SD indicates that the data points are spread out over a 

wider range of values. The SD can be calculated with following formula: 

 

where { } are the observed values of the sample items,  is the mean value of these 

observations, and N is the number of observations in the sample. 

 In the SD formula, for this example, the N is partitions number, and  are costs of nodes. 

As we calculated 5-graph, the SD value is 5.3720e+05. With the same method, the SD values are 

5.0496e+05 and 3.7213e+05 for 4-graph and 3-graph respectively. As you can see from the 

results, 3-graph has a smaller SD value. 

CONCLUSION AND FUTURE WORK 

This paper presents an agglomerative-adapted partition approach for large-scale RDF graphs. 

According to the characteristics of ontology structure and triples, we propose a bottom-up and 

multi-layer node-merging algorithm which contains blank nodes merging, associated nodes 

merging, and inference nodes merging. Relative independence and moderate equilibrium are the 

main points of consideration in the process of partition segmentation. When merging, blank 

nodes cannot be split into new partitions, and Classes involved in the inference rules are 

recommended to be in one same partition. The merging algorithm can be looped based on the 

desired number of partitions, k-graph, and the triples in each partition can be efficiently stored, 

retrieved, exported, and inferred. In this paper, we give an example of a bibliographic platform 

based on BIBFRAME ontology to verify the proposed partition algorithm. 

 

Figure 9. Partitions comparison of different degrees for Bibliographic platform 



Chen et al. / International Journal of Librarianship 4(1)                                                       17 

 There is still a lot to be studied and improved upon in the future. For example, the case in 

this paper does not involve rule reasoning, which will be added in subsequent research. 

Reasoning is regarded as one of the core functions of semantic web. Another job that needs to be 

improved is how to set the k value. Currently, k is selected on the basis of experience, which 

depends too much on the human factor. Finally, we will use the method of machine learning to 

automatically detect the optimal k value. 
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